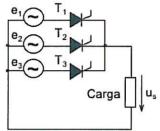
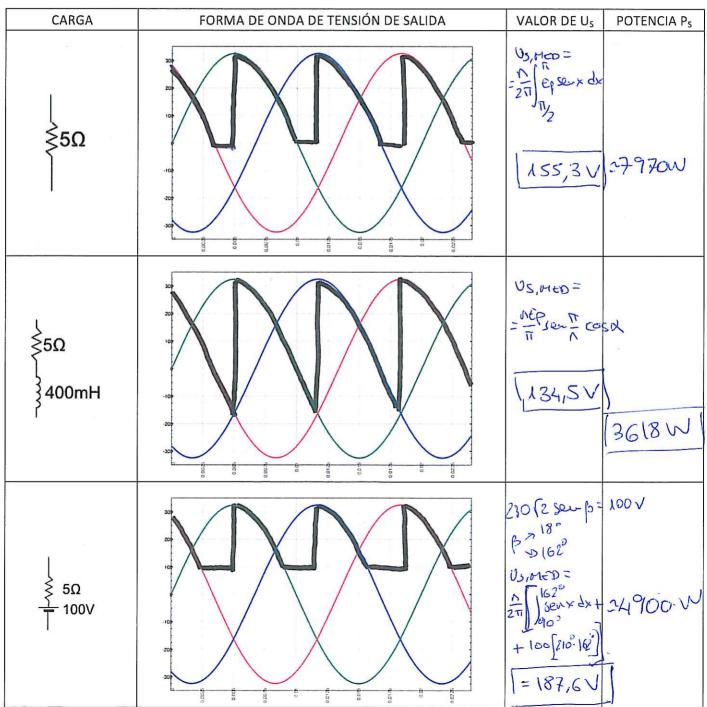


N1 L	NIO NA-A	
Nombre:	Nº Mat.:	

Asignatura: Electrónica Industrial (202)


Especialidad: Ing.Eléctrica 4ºGITI

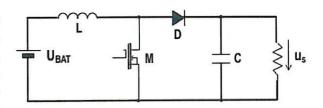
Fecha: 19/01/2017


Publicación de notas: 02/02/17 Revisión de examen: 07/02/17

CUESTIÓN 1 (3,3 puntos)

El rectificador de la figura alimenta a una carga desde una red trifásica de 230V eficaces fase-neutro y 50Hz. Los tiristores del rectificador son ideales y se disparan con un ángulo de retraso α = 60° . Existen tres cargas diferentes que pueden conectarse a este rectificador.

a) Para las tres cargas indicadas, dibujar la forma de onda de tensión de salida U_s, calcular su valor medio y la potencia entregada a la carga



CUESTIÓN 2 (3,3 puntos)

El circuito de la figura es un convertidor dc-dc tipo elevador. Se emplea para alimentar con 120V constantes una carga resistiva cuyo valor oscila entre 12Ω y 24Ω . La energía proviene de una batería de 48V cuya tensión, puede variar entre 30V y 50V en función de su estado de carga. La frecuencia de conmutación del transistor MOSFET es de 100kHz. El condensador C es suficientemente grande y no presenta rizado y la bobina presenta una inductancia de 1mH.

a)	Indicar el máximo y el mínimo ciclo de trabajo del convertidor	d _{MIN} (SeV) 0,58	d _{MAX} (35V) 0,75
b)	Calcular la máxima potencia de salida y la máxima corriente media de entrada	Ps 12∞ W	I _{BAT} 4⊙ A
c)	Calcular la máxima corriente media en el transistor y en el diodo	1 _M 30 A	lo A
d)	Calcular la máxima tensión drenador-fuente en el transistor y la inversa del diodo	U _M \2€ ∨	120 V
e)	Calcular el máximo rizado de corriente en la bobina	ΔI _{L,MAX}	
f)	Calcular el valor del condensador C para que el rizado de la tensión de salida sea 1% en el peor caso	62,5 MF	

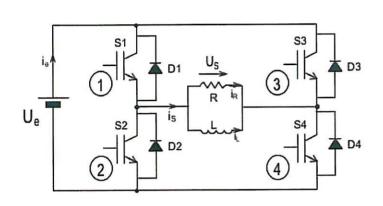
Com. devoter
$$U_S = \frac{U_{BAT}}{1-d}$$
 $P_{S,HAX} = \frac{U_S^2}{R_{MIN}}$; $J_{BAT,HAX} = \frac{P_{S,HAX}}{U_{DAT,MIN}}$
 $J_{D,HCD} = \frac{U_S}{R_{MIN}}$; $J_{T,HCD}(HAX) = \frac{P_{S,MAX}}{U_{BAT,HIN}} \left(1 - \frac{U_{BAT,HIN}}{U_S}\right)$
 $U_M = U_D = U_S$.

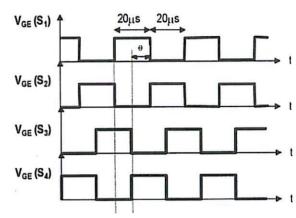
 $A\dot{U} = \frac{U_C \cdot d}{U_C \cdot d}$: pare heller el evinimo: $\frac{dA\dot{U}}{dA} = 0$ $\frac{d}{dC} = 0.5$
 $\frac{d}{dC} = 0.5$

Por teubo el evinimo en para $U_{BAT} = 50V$.

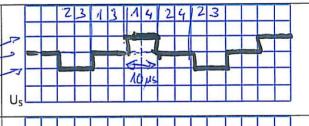
 $\frac{dT}{dC} = 0.5$

$$\frac{1}{100} = \frac{10.075}{120} = \frac{10.075}{120} = \frac{10.075}{120} = \frac{62.5}{120}$$

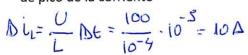

UNIVERSIDAD POLITÉCNICA DE MADRID = Escuela Técnica Superior De Ingenieros Industriales Departamento De Automática, Ingeniería Electrónica E Informática Industrial DIVISIÓN DE INGENIERÍA ELECTRÓNICA (DIE)



Nombre: ______ Nº Mat.:_____

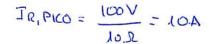

CUESTION 3 (3,3 puntos)

La figura muestra un inversor monofásico controlado por fase desplazamiento de fase, siendo θ el ángulo de solape. Los interruptores del mismo son IGBTs con diodos en antiparalelo. La carga está compuesta por una resistencia (R=10 Ω) en paralelo con una bobina (L=100 μ H). La tensión de entrada es una tensión continua, constante, e igual a 100V. La figura 2 muestra las señales de disparo de los IGBTs cuya frecuencia de conmutación es de 25kHz. Considerar los semiconductores ideales y la corriente por la bobina con valor medio igual a cero en régimen permanente (una vez transcurrido el transitorio de arranque).

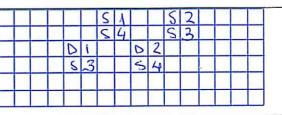


a) Dibujar la forma de onda de la tensión salida (U_s) en régimen permanente, indicando valores de tensión y tiempos.

b) Dibujar la corriente por la resistencia (I_R), la corriente por la bobina (I_L), y la corriente de salida (I_S) en régimen permanente, indicando los valores de pico de la corriente



-100V



 c) Indica, en cada instante, por donde circula la corriente de salida

			10000		
d)	Calcular la corriente media en cada	I _{S1,MED}	2,50	P _{S1}	7,5 W
	semiconductor, y sus pérdidas de potencia para un θ =90 $^{\circ}$ (10 μ s)	I _{S2,MED}	2,5 A	P _{S2}	7,5 W
	- Diodos (Vγ=1V y rd=0Ω)	I _{S3,MED}	3,75 A	P _{S3}	11,25 W
	- 1GBT (U _{CE,SAT} =3V)	I _{S4,MED}	3,75A	P _{S4}	11,22 W
di.		I _{D1,MED}	1,25 A	P _{D1}	1,25 W
		I _{D2,MED}	1,25A	P _{D2}	1,25 W
		I _{D3,MED}	OA	P _{D3}	o W
		I _{D4,MED}	OA	P _{D4}	0 W
e)	Calcular el rendimiento del inversor	η Ρ τ	z = 500 W	n	= 92,5%
f)	Calcular el radiador que necesita este inversor, si todos los semiconductores van montados en el mismo y asumiendo que el régimen pulsante es de alta frecuencia. La resistencia térmica de cualquiera de los semiconductores es $R_{\theta UC}=0,5^{\circ}C/W$ y la $R_{\theta CR}=0^{\circ}C/W$. La temperatura máxima permitida en la unión del semiconductor es de $150^{\circ}C$ y la ambiente es de $30^{\circ}C$.	ROPA = 2,86°C/W			
)\			1 -	1 1

f) El disipador en común para todos y por lo tembo disipa 40W. ATRA = PORA · Proma (40W)

El radiator que derà typert por el dispositivo que tenga menyor carte de temperatura unión-capsula. Como todos treven la misma Rova, serà el que men potencia disipe (53,54).

To=TA+ ROPA PTOTAL + PEUC PS3, MODIA
Régimen alte frecueire.