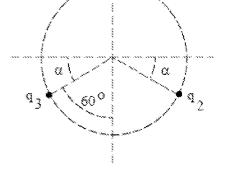
EXAMEN TIPO B

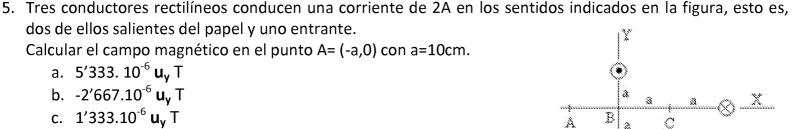

El problema se corregirá siempre que en el test se obtenga al menos 3 puntos.

<u>DATOS</u>: Constante de Columb, $K=9.10^9$ N.m²/C²; permitividad del vacío $\varepsilon_0=8'85.10^{-12}$ C²/(N.m²); permeabilidad del espacio libre, μ_0 = $4\pi.10^{-7}$ N/A². $\mathbf{u_x}$, $\mathbf{u_y}$, $\mathbf{u_z}$ los vectores unitarios en la dirección de los ejes cartesianos X,Y,Z. Carga del electrón=1'602 10⁻¹⁹ C; masa electrón=9'109.10⁻³¹ kg; Gravedad: 9'8m/s².

TEST ELIMINATORIO (max 5 puntos):

Disponemos de tres cargas q1=5.10⁻⁵C, q2=q3=-q1/2 situadas sobre una circunferencia de radio 1 m como indica la figura. Calcular la fuerza total ejercida sobre la carga q1.

- a. -6'49 **u_v**
- b. 3'24 **u**_x -6'49 **u**_v
- c. $-3'24 \mathbf{u}_x + 6'49 \mathbf{u}_y$
- d. N.d.a



- 2. Tres condensadores idénticos se conectan de tal modo que su capacidad equivalente es máxima. Los condensadores se han conectado:
 - a. Dos en serie y esa serie en paralelo con el tercer condensador
- b. En paralelo
- c. Dos en paralelo y ese paralelo en serie con el tercer condensador
- d. En serie
- 3. Calcular la energía almacenada en un condensador de 20pF cuando las cargas en las placas son ±5µC.
- b. 1'6 J
- c. 0'625J

- d. N.d.a.
- 4. Si la corriente de un inductor se dobla, la energía almacenada:
 - a. se cuadruplicará;
- b. permanecerá igual; c. se doblará; d. será la mitad.

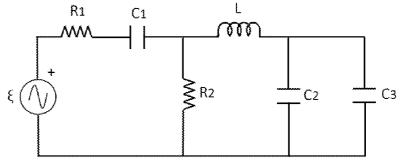
dos de ellos salientes del papel y uno entrante. Calcular el campo magnético en el punto A= (-a,0) con a=10cm.

- a. 5'333. 10⁻⁶ **u_v** T
- b. -2'667.10⁻⁶ **u_v** T
- c. 1'333.10⁻⁶ **u**_v T
- d. N.d.a.

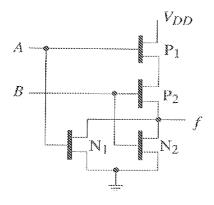
6. El módulo de la diferencia de potencial entre los puntos a y b es:

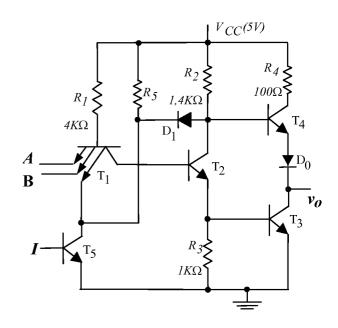
- a. 2'4V
- b. 5'6V
- c. OV

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

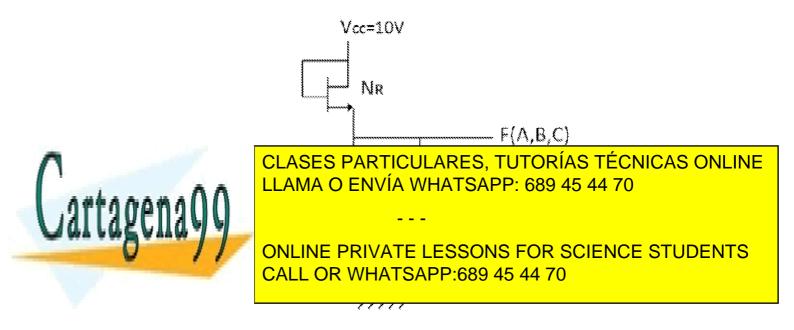

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

b. 0'001V


20µF www.cartagenagenagenan no se hace responsable de la información contenida en el presente documento a virtud al


Artículo 17.1 de la Ley de Servicios de la Sociedad de la Información y de Comercio Electrónico, de 11 de julio de 2002. Si la información contenida en el documento es ilícita o lesiona bienes o derechos de un tercero háganosio saber y será retirada.

- 8. Se desea calcular la corriente máxima, módulo y fase, que suministra el generador del circuito de la figura cuyo valor máximo es de 10V .(Datos:R1 = 2Ω ; R2 = 2Ω ; C1 = $-2j\Omega$; C2 = $-4j\Omega$; C3 = $-4j\Omega$; L = $4j\Omega$)
 - a. $25'62A y 67'34^{\circ}$
 - b. 3'16 A y 18'44°
 - c. $12'37A y 23'02^{\circ}$
 - d. N.d.a.


- 9. Dada la puerta mostrada en la figura de abajo-derecha, cuando las entradas A, B e I están en baja, se cumple que:
 - a. T1 en corte y T2 y T3 en corte.
- b. T1 en saturación y T2 y T3 en saturación.
- c.T1 en corte y T2 y T3 en saturación.
- d. T1 en activa y T2 y T3 en corte.
- 10. Dada la puerta mostrada en la figura de abajo-izquierda, cuando la entrada A está en alta, se cumple que:
 - a. Depende del valor de la entrada B.
 - b. P1 conduce y la salida es alta.
 - c. N1 conduce y la salida es baja.
 - d. N. d. a.

PROBLEMA 1 (max 3 puntos)

Dado el circuito de la figura, analice el comportamiento para las distintas configuraciones de entrada (A,B,C).

