

Aerodynamics (AER)

LESSON 1: INTRO TO AERODYNAMICS - GENERAL EQUATIONS -

José I. Rojas josep.ignasi.rojas@upc.edu Building C3, Office 120

CONTENTS

LESSON 1: INTRO - GENERAL EQUATIONS

- Introduction
- General Eq. of the fluid motion: Navier-Stokes Eq.:
 - · continuity equation
 - Newton's 2nd Principle
 - energy equation
 - orders of magnitude of the various terms
- Simplifications in conventional aeronautics
- Irrotational motion and velocity potential:
 - from Euler Eq. to Euler-Bernoulli Eq. and Bernoulli Eq.
 - differential Eq. for the velocity potential

EETAC - AER - José I. Rojas

INTRODUCTION

- Global objective \rightarrow to calculate aerodynamic forces on aircraft in horizontal motion in steady atmosphere ($V_w = 0$)
- Wind reference frame:
 - bonded to aircraft (origin in CG or elsewhere in symmetry plane)
 - x_w -axis \rightarrow along direction of incident flow
 - z_w -axis \rightarrow contained in vertical plane, opposite to gravity
 - y_w -axis \rightarrow chosen such that we have a dextrogyre reference frame
- Forces: drag $F_x = D$, lift $F_z = L$, & lateral force $F_v = Q$
- Hypotheses: constant mass, rigid body, symmetric aircraft, etc.
- Fluid properties: ρ , T, p $\bar{V} = (U_{\infty} + u_{x})\bar{\iota} + u_{y}\bar{\jmath} + u_{z}\bar{k}$

EETAC – AER – José I. Rojas

3

INTRO – GENERAL EQUATIONS IMPORTANT REFERENCE FRAMES Body Axes (Aircraft attitude) Aerodynamic Axes

Aerodyllamic Axes

- $\blacktriangleright \psi$: yaw angle or rhumb
- \bullet θ : pitch angle
- $ightharpoonup \phi$: roll angle

- $ightharpoonup \alpha$: angle of attack
- ightharpoonup eta: sideslip angle
- (Mellibovsky, F.P., Flight Principles, 2016)

EETAC – AER – José I. Rojas

Origin: Gravity Centre.

Earth Axes:

- ▶ z_e: Vertical axis. Oriented by local gravitational acceleration vector.
- ▶ x_e: Latitude axis. South-North direction.
- ▶ y_e: Longitude axis. West-East direction.

Body Axes:

- x: Fuselage (roll) axis. Forward pointing, aligned with the fuselage.
- z: Belly (yaw) axis. In the airplane symmetry plane.
- ▶ y: Right wing (pitch) axis. Completing a direct orthonormal basis, aligned with the right wing.

Aerodynamic Axes:

- ► x_a: Oriented by the aerodynamic velocity vector.
- \triangleright z_a : In the airplane symmetry plane.
- ▶ y_a: Completes a direct orthonormal basis.

(Mellibovsky, F.P., Flight Principles, 2016)

EETAC - AER - José I. Rojas

5

INTRO – GENERAL EQUATIONS

GENERAL EQUATIONS OF THE FLUID MOTION (1)

In aerodynamics, media satisfy the continuum hypothesis:

The fluid is treated as a continuum by viewing it at a coarse enough scale that the airfoil surface cannot distinguish the individual molecular collisions. One can then assign a local average flow velocity at a point by averaging over the much faster, violently fluctuating molecular velocities. Similarly, one defines a locally averaged density, pressure, etc. These locally averaged quantities then vary smoothly all over the fluid domain on the macroscopic scale (except when crossing shock waves)

EETAC - AER - José I. Rojas

_

GENERAL EQUATIONS OF THE FLUID MOTION (2)

In aerodynamics, continuous media satisfy:

- Law of mass conservation → Continuity Eq.
- Newton's 2nd Principle → Momentum conservation Eqs.
- 1st Law of Thermodynamics \rightarrow Energy Eq.
- 2nd Law of Thermodynamics
- Constitutive laws → secondary principles that characterize the media:
 - Ex. 1: State Eqs. for fluids

(Anderson, J.D., Fundamentals of Aerodynamics, 2001)

Ød¶

- Ex. 2: Hooke's Law for linear elastic solids
- Ex. 3: Navier-Stokes' Law of viscosity, valid for many viscous fluids

EETAC - AER - José I. Rojas

7

INTRO – GENERAL EQUATIONS

CONTINUITY EQUATION (1)

"The net mass flux through the surface of the control vol. is equal to the temporal variation of the mass inside the control vol."

• Integral formulation $\rightarrow \frac{d}{dt}$

$$\frac{d}{dt} \int_{D} \rho dv + \int_{S} \rho \bar{V} \cdot \bar{n} ds = 0$$

Gauss-Ostrogradski (Divergence) Theorem

$$\int_{D} \nabla \cdot (\rho \bar{V}) dv =$$

Differential formulation —

 $\frac{D\rho}{Dt} = \frac{\partial\rho}{\partial t} + \bar{V}\cdot\nabla\rho$

EETAC – AER – José I. Rojas

CONTINUITY EQUATION (2)

The substantive or Stokes derivative:

$$\frac{D\rho}{Dt} = \frac{\partial\rho}{\partial t} + \bar{V} \cdot \nabla\rho$$

"A derivative taken with respect to a moving coordinate system, also called the Lagrangian derivative, substantive derivative (Tritton 1989), or Stokes derivative (Kaplan 1991, pp. 189-191)."

• Contribution due to temporal variation (non-stationary problem)

 $\frac{\partial \rho}{\partial t}$

 Contribution due to variation along the streamline (non-uniform problem)

 $\bar{V} \cdot \nabla c$

Please, note the difference between **streamline** & **particle trajectory**

(White, F.M., Fluid Mechanics, 6th ed., Boston, USA: McGraw-Hill, 2003, p. 866)

EETAC - AER - José I. Rojas

٥

INTRO – GENERAL EQUATIONS

NEWTON'S 2nd PRINCIPLE (1)

"The temporal variation of momentum of the fluid inside a control vol. is equal to the sum of the external forces acting on the vol."

Integral formulation

$$\frac{d}{dt} \int_{D} \rho \bar{V} dv + \int_{S} \rho \bar{V} (\bar{V} \cdot \bar{n}) ds = -\int_{S} p \bar{n} ds + \int_{S} \bar{n} \cdot \tau' ds + \int_{D} \rho \overline{F_{m}} dv$$

Differential formulation

Gauss-Ostrogradski
Theorems

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \bar{V}) = 0 \qquad \rightarrow \rho \frac{D\bar{V}}{Dt} = -\nabla p + \nabla \cdot \tau' + \rho \overline{F_n}$$

(we simplify with the Continuity Eq.)

EETAC - AER - José I. Rojas

NEWTON'S 2nd PRINCIPLE (2)

"The temporal variation of momentum of the fluid inside a control vol. is equal to the sum of the external forces acting on the vol."

• Differential formulation

$$\rho \frac{D\overline{V}}{Dt} = -\nabla \mathbf{p} + \nabla (\mathbf{\tau}') + \rho \overline{F_m}$$

Note: For a viscous fluid, it is necessary to model the dissipative action of viscosity through the **viscous stress tensor** → e.g., Navier-Stokes model

$$\tau' = \zeta(\nabla \cdot \bar{V})I + \mu \left[(\nabla \bar{V} + \nabla \bar{V}^T) - (\frac{2}{3})(\nabla \cdot \bar{V})I \right]$$

EETAC – AER – José I. Rojas

11

INTRO – GENERAL EQUATIONS

ENERGY EQUATION

"In a control vol., there is balance between the temporal variation of total energy & the work produced by external forces plus the heat received from the exterior, per unit time"

• Differential formulation – version 1 (from the 1st Law of Thermodynamics)

$$de = dw + dq \longrightarrow \rho \frac{De}{Dt} = \nabla \cdot (k\nabla T) - p\nabla \cdot \overline{V} + \Phi_v - \nabla \cdot \overline{q_r} + Q_{rq}$$

• Differential formulation – version 2 (we combine the Continuity Eq. & the 2nd Law of Thermodynamics with the previous expression)

$$de = Tds - pdv \longrightarrow \rho T \frac{Ds}{Dt} = \nabla \cdot (k\nabla T) + \Phi_v - \nabla \cdot \overline{q_r} + Q_{rq}$$
$$\Phi_v = \nabla \cdot (\tau' \cdot \vec{v})$$

EETAC - AER - José I. Rojas

HOW TO SOLVE THE FLUID PROBLEM?

No general analytical (exact) solution satisfies the Navier-Stokes Eqs.

Particular cases allow simplifications: procedure:

- is there any term negligible compared to the others? If so \rightarrow eliminate it!
- are new Eqs. solvable analytically?

only in some simple cases \rightarrow yes! \odot

in most cases → still no! 😌

Then, we use numerical methods (the fluid domain is discretized into multiple cells and we solve the Navier-Stokes Eqs. or simplified versions in, e.g., the nodes of these cells):

computational fluid dynamics (CFD)

EETAC - AER - José I. Rojas

13

INTRO – GENERAL EQUATIONS

ORDER OF MAGNITUDE OF TERMS IN EQS.

Newton's 2nd Principle: orders of magnitude:

- pressure term \rightarrow rel. to inverse of M^2
- viscous term → rel. to inverse of *Re*
- mass or vol. forces \rightarrow rel. to inverse of Fr
- non-stationary term \rightarrow rel. to St

$$M = U_{\infty}/a$$

$$Re = \rho U_{\infty}L/\mu$$

$$Fr = U_{\infty}^{2}/gL$$

$$St = fL/U_{\infty} = t_{v}/t_{c}$$

$$\rho \frac{D\overline{V}}{Dt} = -\nabla \mathbf{p} + \nabla \cdot \tau' + \rho \overline{F_m}$$

EETAC - AER - José I. Rojas

SIMPLIFICATIONS IN CONVENTIONAL AERONAUTICS

Newton's 2nd Principle: which terms can we simplify?

- pressure term \rightarrow the term we want to compute, as important as the most important term $(M \approx 1) \rightarrow$ reaction that equilibrates the other terms
- viscous term → negligible if Re >> 1, except in boundary layer (BL) & wake
- mass or vol. forces → negligible if Fr >> 1, i.e., if the flight is due to dynamic effects & not static effects (buoyancy forces/Archimedes' Principle)
 - exceptions → not negligible for balloons & dirigibles (Zeppelins)

$$\rho \frac{D\overline{V}}{Dt} = (-\nabla \mathbf{p}) + (\nabla \cdot \tau) + (\rho \overline{F_m}) \qquad \text{Re, Fr} >> 1; M \approx 1$$

$$\rho \frac{D\overline{V}}{Dt} = -\nabla \mathbf{p}$$
(Euler Eq.)

$$\frac{D\bar{V}}{Dt} = \frac{\partial \bar{V}}{\partial t} + \bar{V} \cdot \nabla \bar{V} = \frac{\partial \bar{V}}{\partial t} + \frac{1}{2} \nabla (\bar{V} \cdot \bar{V}) - \bar{V} \times (\nabla \times \bar{V}) = -\frac{1}{\rho} \nabla p$$

EETAC – AER – José I. Rojas

15

INTRO – GENERAL EQUATIONS

SIMPLIFICATIONS IN CONVENTIONAL AERONAUTICS

Energy Eq.: orders of magnitude + which terms can we simplify?

- heat flux from radiation \rightarrow negligible
- heat flux from chemical reaction → negligible
 - exception → not negligible in re-entry of spacecraft (M > 5)

$$\rho T \frac{Ds}{Dt} = \nabla \cdot (k \nabla T) + \Phi_v - \nabla \cdot \overline{q_r} + Q_{rq} \longrightarrow \rho T \frac{Ds}{Dt} = \nabla \cdot (k \nabla T) + \Phi_v$$

- heat flux from conduction \rightarrow negligible if $Pr \cdot Re >> 1$ $Pr = \mu c_p/k \approx 1$
- Rayleigh dissipation function → negligible if Re/M² >> 1

$$\rho T \frac{Ds}{Dt} = \nabla \cdot (k \nabla T) + \Phi_{v} \longrightarrow \rho T \frac{Ds}{Dt} = 0 \longrightarrow \frac{Ds}{Dt} = \frac{\partial s}{\partial t} + \bar{V} \cdot \nabla s = 0$$

Note: If entropy is constant in the infinite upwind, this constant is the same for all the stream lines, except in boundary layer (BL) & shock waves

EETAC – AER – José I. Rojas

SIMPLIFICATIONS IN CONVENTIONAL AERONAUTICS

Energy Eq. (simplification):

Barotropic relation \rightarrow unique relation between $p \& \rho$, independent of T:

- incompressible (e.g., liquids) → ρ = constant; independent of p & T
- compressible → only in isentropic (adiabatic & reversible) problems:

$$s = \text{constant} \rightarrow \text{E.g.: perfect gases} \rightarrow \frac{p}{\rho^{\gamma}} = ct$$

State Eq. (constitutive Eq.):

- incompressible (e.g., M < 0.3) $\rightarrow \rho = ct$
- compressible: perfect gases model →

$$= R'T$$
 $R' = -$

EETAC - AER - José I. Rojas

17

INTRO – GENERAL EQUATIONS

CONTINUITY EQUATION – EXERCISE

"The net mass flux through the surface of the control vol. is equal to the temporal variation of the mass inside the control vol."

- Integral formulation $\rightarrow \frac{d}{dt} \int_{D} \rho dv + \int_{S} \rho \bar{V} \cdot \bar{n} ds = 0$
- Ex.: uniform stationary problem (non-porous walls):
 - case 1: with viscosity
 - case 2: without viscosity
 - case 3: with porous walls

EETAC - AER - José I. Rojas

CONTINUITY EQUATION – QUESTION

For an air flow in a duct with $St \ll 1$ and $M \ll 1$, if the inlet cross sectional area A1 is twice as large as that of the outlet A2, the inlet airflow velocity:

- a) is twice the outlet airflow velocity
- b) is equal to the outlet airflow velocity
- c) is half the outlet airflow velocity
- d) We don't have enough information to choose
- e) None of the others

EETAC – AER – José I. Rojas

INTRO – GENERAL EQUATIONS

IRROTATIONAL MOTION & VELOCITY POTENTIAL

Circulation & Stokes Theorem:

$$\Gamma = \oint_{C} \bar{V} \cdot d\bar{l} = \int_{S} (\nabla \times \bar{V}) \cdot \bar{n} ds$$

Circulation null (global vorticity null) → irrotational motion

Velocity potential:

$$\Phi = \Phi(x, y, z, t)$$

 $\bar{V} = \nabla \Phi$

Conditions for the velocity potential to exist:

- Bjerknes-Kelvin Theorem: If viscosity & conduction are negligible, mass forces are derived from a potential (e.g., are negligible), & fluid is barotropic → circulation is constant
- If velocity is uniform & stationary (constant) in the infinite (i.e., aircraft flies in steady atmosphere) → circulation is null
- As circulation is constant = 0 → global vorticity must be null for all the fluid field → we have irrotacional motion & velocity potential

EETAC - AER - José I. Rojas

EULER-BERNOULLI EQUATION

Euler Eq. particularized for irrotational flow:

$$\frac{\partial \bar{V}}{\partial t} + \frac{1}{2} \nabla (\bar{V} \cdot \bar{V}) - \bar{V} \times (\nabla \times \bar{V}) = -\frac{1}{\rho} \nabla p$$

$$\nabla \times \bar{V} = 0$$

$$\Phi = \Phi(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{t})$$

$$\bar{V} = \nabla \Phi$$
• incompressible $\rightarrow \rho = ct$

$$\frac{\partial \Phi}{\partial t} + \frac{1}{2} |\nabla \Phi|^2 + \frac{p}{\rho} = C(t)$$
• perfect gases $\rightarrow \frac{p}{\rho^{\gamma}} = ct$

$$\frac{\partial \Phi}{\partial t} + \frac{1}{2} |\nabla \Phi|^2 + \frac{a^2}{\gamma - 1} = C''(t)$$

EETAC - AER - José I. Rojas

21

INTRO – GENERAL EQUATIONS

BERNOULLI EQUATION

Euler-Bernoulli Eq. particularized for stationary flow:

• incompressible
$$\rightarrow$$

$$\frac{1}{2}\rho_{\infty}|\nabla\Phi|^2 + p = \frac{1}{2}\rho_{\infty}U_{\infty}^2 + p_{\infty}$$

• perfect gases
$$\rightarrow$$
 $\frac{1}{2}|\nabla\Phi|^2 + \frac{a^2}{\gamma - 1} = \frac{1}{2}U_{\infty}^2 + \frac{a_{\infty}^2}{\gamma - 1}$

(Bernoulli Eq.)

$$a = \sqrt{\gamma R'T} = \sqrt{\gamma \frac{p}{\rho}}$$
 $R' = \frac{R}{M}$

EETAC – AER – José I. Rojas

PROCEDURE TO FULFIL OUR OBJECTIVE

To compute the aerodynamic forces (*p* distrib.) on the airfoil:

- 1. compute velocity potential from differential Eq. for velocity potential
- 2. then compute velocity field from velocity potential
- 3. then compute pressure field by application of Bernoulli Eq.:

$$\frac{1}{2}\rho_{\infty}|\nabla\Phi|^2+p=\frac{1}{2}\rho_{\infty}{U_{\infty}}^2+p_{\infty}$$

EETAC - AER - José I. Rojas

23

INTRO – GENERAL EQUATIONS

DIFFERENTIAL EQ. FOR VELOCITY POTENTIAL

We obtain the **differential Eq. for the velocity potential** by eliminating $\rho \& V$ from the Continuity Eq. + Euler-Bernoulli Eq.

recall that this is only for potential flow \to i.e., Bjerknes-Kelvin Theorem must apply & properties in the infinite are uniform & stationary

Further simplification is possible if we can also assume:

- *St* << 1 → stationary problem
- low speed: $M < 0.30 \rightarrow$ compressibility effects neglected: $\rho = ct$

$$\frac{D\rho}{Dt} + \rho \nabla \cdot \bar{V} = 0 \qquad \frac{\rho = ct}{\rho} \Rightarrow \nabla \cdot \bar{V} = 0 \qquad \frac{\bar{V} = \nabla \Phi}{\rho} \Rightarrow \nabla \cdot (\nabla \Phi) = \Delta \Phi = 0$$

$$(\text{Laplace Eq.}) \qquad \Delta \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = 0$$

EETAC – AER – José I. Rojas

EXERCISE 1.0 – CONTINUITY EQUATION

EETAC – AER – José I. Rojas

25

LESSON 1: INTRO TO AERODYNAMICS - GENERAL EQUATIONS -

THANKS FOR YOUR ATTENTION ANY QUESTION?

MACH NUMBER (1)

Mach number M: ratio flow velocity-to-speed of sound:

$$M = \frac{U_{\infty}}{a} \qquad \qquad a = \sqrt{\gamma R' T} = \sqrt{\gamma \frac{p}{\rho}} \qquad R' = \frac{R}{M}$$

• uncompressible/low subsonic M < 0.30 (or 0.40 or 0.50)

compressible/high subsonic
 transonic
 0.30 < M < 0.75
 0.75 < M < 1.20

transonic 0.75 < M < 1.20
 sonic regime M = 1.00
 supersonic 1.20 < M < 5.00

• Hypersonic *M* > 5.00

EETAC – AER – José I. Rojas

	Parameter	Definition	Qualitative ratio of effects	Importance	
	Reynolds number	$Re = \frac{\rho UL}{\mu}$	Inertia Viscosity	Almost always	_
	Mach number	$Ma = \frac{U}{a}$	Flow speed Sound speed	ound speed Compressible flow nertia Free-surface flow Inertia Free-surface flow	
	Froude number	$Fr = \frac{U^2}{gL}$	Inertia Gravity		
	Weber number	$We = \frac{\rho U^2 L}{\Upsilon}$	Inertia Surface tension		
	Rossby number	$Ro = \frac{U}{\Omega_{\text{earth}}L}$	Flow velocity Coriolis effect	Geophysical flows	(White, F.M., Fluid Mechanics, 6 th ed., Boston, USA: McGraw-
	Cavitation number (Euler number)	$\mathrm{Ca} = \frac{p - p_v}{\rho U^2}$	Pressure Inertia	Cavitation	
	Prandtl number	$Pr = \frac{\mu c_p}{k}$	Dissipation Conduction	Heat convection	
	Eckert number	$Ec = \frac{U^2}{c_p T_0}$	Kinetic energy Enthalpy	Dissipation	
	Specific-heat ratio	$k = \frac{c_p}{c_v}$	Enthalpy Internal energy	Compressible flow	Hill, 2003, p. 866)
	Strouhal number	$St = \frac{\omega L}{U}$	Oscillation Mean speed	Oscillating flow	
	Roughness ratio	$\frac{\epsilon}{L}$	Wall roughness Body length	Turbulent, rough walls	
	Grashof number	$Gr = \frac{\beta \Delta T g L^3 \rho^2}{\mu^2}$	Buoyancy Viscosity	Natural convection	
	Rayleigh number	$Ra = \frac{\beta \Delta T g L^3 \rho^2 c_p}{\mu k}$	Buoyancy Viscosity	Natural convection	
	Temperature ratio	$\frac{T_w}{T_0}$	Wall temperature Stream temperature	Heat transfer	
	Pressure coefficient	$C_p = \frac{p - p_{\infty}}{\frac{1}{2}\rho U^2}$	Static pressure Dynamic pressure	Aerodynamics, hydrodynai	
	Lift coefficient	$C_L = \frac{L}{\frac{1}{2}\rho U^2 A}$	Lift force Dynamic force	Aerodynamics, hydrodynar	
	Drag coefficient	$C_D = \frac{D}{\frac{1}{2}\rho U^2 A}$	Drag force Dynamic force	Aerodynamics, hydrodynar	mics
	Friction factor	$f = \frac{h_f}{(V^2/2g)(L/d)}$	Friction head loss Velocity head	Pipe flow	
	Skin friction coefficient	$c_{\rm f} = \frac{\tau_{\rm wall}}{\rho V^2/2}$	Wall shear stress Dynamic pressure	Boundary layer flow	30