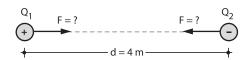
Electricidad 285

TEST

- 1.- Entre cargas de electricidad estática.
 - a) Los negativos atraen a los positivos.
 - b) Los negativos atraen a los negativos.
 - c) Los negativos repelen a los positivos.
 - d) Los positivos atraen a los positivos.
 - e) Los negativos a veces repelen a los positivos.
- 2.- Si un objeto tiene 3 cargas negativas y 2 cargas positivas, está:
 - a) Cargado negativamente.
 - b) Cargado positivamente.
 - c) Cargado positiva y negativamente.
 - d) No tiene carga.
 - e) Faltan datos.
- 3.- Un objeto tendrá una carga eléctrica si:
 - a) Gana electrones.
 - b) Pierde electrones.
 - c) Ni a ni b.
 - d) Ya sea a ó b.
 - e) Cumple la ley de la inercia.
- 4.- Se cree que una corriente eléctrica es un movimiento de:
 - a) Protones.
 - b) Electrones.
 - c) Electrones libres.
 - d) Protones libres.
 - e) Neutrones.
- 5.- Al acercar un cuerpo electrizado negativamente a una esferita de un péndulo eléctrico, dicha esferita es repelida. Entonces la esferita sólo podría:
 - a) Estar cargada positivamente.
 - Estar cargada negativamente.
 - c) Estar electrizada o neutra.
 - d) Estar neutra.
 - e) Ninguna de las anteriores.
- **6.-** Si un cuerpo se carga positivamente:
 - a) Ganó protones.
 - b) Perdió peso.
 - c) Aumentó de peso.
 - d) No contiene iones positivos.
 - e) Ninguna de las anteriores.

7.- Considere dos cargas (Q₁ > Q₂) como se indica: ¿Dónde se debe colocar una tercera carga "q" para que quede en equilibrio sobre la línea que une las cargas.

- a) En el punto medio de la distancia que las separa.
- b) Mas cerca de Q₁ entre ambas cargas.
- c) Más cerca de Q entre ambas cargas.
- d) A la izquierda de Q₁.
- e) A la derecha de Q₂.
- 8.- Un cuerpo "A" rechaza a un grupo de sustancias, otro cuerpo "B" rechaza a otro grupo de sustancias, pero las sustancias de ambos grupos se atraen entre sí; entonces señale lo incorrecto.
 - a) A y B están cargados positivamente.
 - b) A y B están cargados negativamente.
 - A está cargado positivamente y B negativamente o viceversa.
 - d) A está neutro y B está cargado positivamente o viceversa.
 - e) A y B están polarizados o descargados.
- 9.- indicar lo incorrecto:
 - a) En electricidad: "Tierra", actúa como un inmenso manantial de electrones.
 - b) Si un cuerpo cargado positivamente se pone a Tierra aumenta su peso y queda neutro.
 - c) El aire se convierte en semi-conductor con la humedad.
 - d) En las fábricas de papel se acostumbra humedecer el ambiente, para evitar los incendios.
 - e) Con una varilla cargada positivamente se toca a un cuerpo pequeño aislado y descargado, dejándolo luego con carga positiva, finalmente la varilla queda necesariamente con carga negativa.
- 10.- Un electroscopio está cargado positivamente, si se le acerca un cuerpo, las hojas disminuyen su abertura ¿Qué carga cree que existe en el cuerpo?
 - a) Positiva solamente.
 - b) Negativa solamente.
 - c) Negativa o neutra.
 - d) Positiva o negativa.
 - e) No se puede saber.


PROBLEMAS RESUELTOS

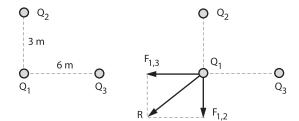
A PROBLEMAS DE APLICACIÓN

1.- Dos cargas puntuales $Q_1 = 4 \times 10^{-6}$ C y $Q_2 = -8 \times 10^{-6}$ C, están separadas 4 metros. ¿Con qué fuerza se atraen?

Solución:

Datos: $Q_1 = 4 \times 10^{-6} \text{ C}$, d = 4 m $Q_2 = 8 \times 10^{-6} \text{ C}$, $K = 9 \times 10^9 \text{ N} \times \text{m}^2 / \text{C}^2$

Luego:


$$F = \frac{KQ_1Q_2}{d^2} = \frac{9 \times 10^9 \left(8 \times 10^{-6}\right) \left(4 \times 10^{-6}\right)}{\left(4\right)^2}$$

 $F = 18 \times 10^{-3}$ Newton

NOTA

El signo de la carga eléctrica sólo se usa para determinar si las fuerzas "F" son de atracción o repulsión.

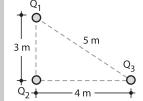
2.- Se tienen 3 cargas como muestra la figura: $Q_1 = 10^{-3}$ C; $Q_2 = 3 \times 10^{-4}$ C y $Q_3 = 16 \times 10^{-4}$ C. Calcular la fuerza resultante en Q_1 .

Solución:

$$F_{1, 2} = \frac{KQ_1Q_2}{3^2} = \frac{9 \times 10^9 (10^{-3})(3 \times 10^{-4})}{9}$$

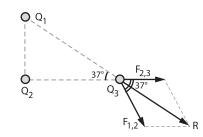
$$F_{1,2} = 300 \text{ N}$$

$$F_{1,3} = \frac{KQ_1Q_3}{6^2} = \frac{9 \times 10^9 (10^{-3})(16 \times 10^{-4})}{36}$$


$$F_{1,3} = 400 \text{ N}$$

Por el teorema de Pitágoras:

$$R = \sqrt{(300)^2 + (400)^2} \implies \boxed{R = 500 \text{ N}}$$


3.- Se tienen tres cargas puntuales como se muestra en la figura:

$$Q_1 = (25/36) \times 10^{-4} \text{ C}$$

 $Q_2 = 4 \times 10^{-5} \text{ C}$
 $Q_3 = 4 \times 10^{-4} \text{ C}$

Calcular la fuerza resultante que actúa sobre Q₃.

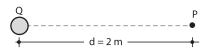
Solución:

$$F_{1,3} = \frac{KQ_1Q_3}{(5)^2} = \frac{9 \times 10^9 \left(\frac{25}{36} \times 10^{-4}\right) \left(4 \times 10^{-4}\right)}{25}$$

$$F_{1,3} = 10 \text{ N}$$

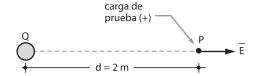
$$F_{2,3} = \frac{KQ_2Q_3}{(4)^2} = \frac{9 \times 10^9 (4 \times 10^{-5})(4 \times 10^{-4})}{16}$$

$$F_{2.3} = 9 \text{ N}$$


☐ Aplicando el método del paralelogramo:

$$R = \sqrt{\left(F_{1,3}\right)^2 + \left(F_{2,3}\right)^2 + 2\left(F_{1,3}\right)\left(F_{2,3}\right)\cos 37^{\circ}}$$

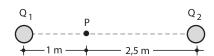
$$R = \sqrt{(10)^2 + (9)^2 + 2(10)(9)(\frac{4}{5})}$$


$$R = \sqrt{235} \ N$$

4.- Se tiene una carga puntual: $Q = 4 \times 10^{-8}$ C. Calcular la intensidad de campo eléctrico a 2 m de distancia como muestra la figura.

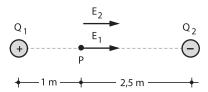
Solución:

Datos: $Q = 4 \times 10^{-8} \,\text{C}$; $d = 2 \,\text{m}$; $K = 9 \times 10^{9} \,\text{N} \times \text{m}^{2}/\text{C}^{2}$



Luego:
$$E = \frac{KQ}{d^2}$$

$$E = \frac{9 \times 10^9 \times 4 \times 10^{-8}}{(2)^2}$$


E = 90 N/C

5.- Se tienen dos cargas: $Q_1 = 5 \times 10^{-6}$ C y $Q_2 = -2,5 \times 10^{-6}$ C como se muestra en la figura; calcular la intensidad de campo eléctrico en el punto "P".

Solución:

Para determinar el sentido de E₂ y E₁, se toma una carga de prueba (+) y se analiza si hay atracción o repulsión en este punto con respecto a las otras cargas, el sentido de "E" coincidirá con el de la fuerza eléctrica.

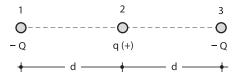
$$E_T = E_1 + E_2$$

Siendo:
$$E = \frac{KQ}{d^2}$$

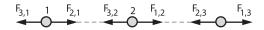
$$E_{T} = \frac{KQ_{1}}{(1)^{2}} + \frac{KQ_{2}}{(2.5)^{2}}$$

$$E_{T} = \frac{9 \times 10^{9} \left(5 \times 10^{-6}\right)}{\left(1\right)^{2}} + \frac{9 \times 10^{9} \left(2, 5 \times 10^{-6}\right)}{\left(2, 5\right)^{2}}$$

$$E_T = 45 \times 10^3 + 3.6 \times 10^3$$


$$E_T = 48600 \, \text{N/C}$$

B PROBLEMAS COMPLEMENTARIOS


1.- En una recta se encuentran tres cargas: una positiva q y dos negativas: -Q. ¿Para que relación de valores de las cargas, estas últimas estarán en equilibrio?

Solución:

Para el equilibrio "q" deberá estar entre ambas cargas negativas.

■ Analizando las fuerzas electrostáticas

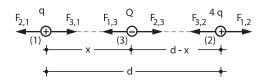
☐ En la partícula (1):

$$F_{3,1} = F_{2,1} = \frac{KQ^2}{(2d)^2}$$
(\alpha)

☐ En la partícula (2):

$$F_{3,2} = F_{1,2} = \frac{KqQ}{d^2}$$
(β)

 \square (α) = (β)


$$\frac{KQ^2}{(2d)^2} = \frac{KqQ}{d^2}$$

$$\frac{q}{Q} = \frac{1}{4}$$

Se tienen dos cargas "+q" y "+4q" separadas una distancia "d"; en la recta que las une se ubica una tercera carga, de tal manera que en dicha condición el sistema esté en equilibrio. Calcular el signo, la magnitud y la posición de esta tercera carga. Inicialmente el sistema está en equilibrio.

Solución:

Analizando las diversas posiciones de "Q", ésta deberá situarse entre q y 4q siendo su signo negativo, para de este modo conseguir el equilibrio del sistema.

Analizando las fuerzas electrostáticas en la carga "3".

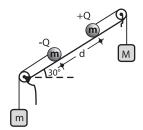
$$F_{1,3} = F_{2,3}$$

$$\frac{KqQ}{x^2} = \frac{K(4q)Q}{(d-x)^2} \quad \Rightarrow \quad (d-x)^2 = 4x^2$$

$$(d-x)^2 = (2x)^2 \implies d=3x$$

odelta d = -x (no cumple)

$$x = \frac{d}{3}$$

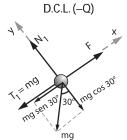

Analizando las fuerzas electrostáticas en la carga "1".

$$F_{2,1} = F_{3,1}$$

$$\frac{Kq(4q)}{d^2} = \frac{KqQ}{\left(\frac{d}{3}\right)^2} \quad \Rightarrow \quad Q = \frac{4}{9}q$$

$$Q = \frac{4}{9}q$$
 Signo negativo

3.-Si no existe rozamiento y el sistema está en equilibrio, determinar la relación de "Q" con "M" y con

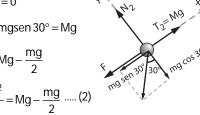

Solución:

■ Analizando (–Q)

$$\Sigma F_v = 0$$

 $F = mg + mgsen 30^{\circ}$

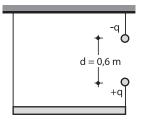
$$\frac{KQ^2}{d^2} = \frac{3}{2}$$
mg (1)


☐ Analizando (+Q)

$$\Sigma F_x = 0$$

$$F + mgsen 30^{\circ} = Mg$$

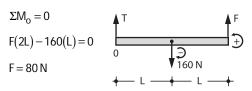
$$F = Mg - \frac{mg}{2}$$


$$\frac{KQ^2}{d^2} = Mg - \frac{mg}{2}$$
 (2)

Despejando mg de (1) y reemplazando en (2):

$$\frac{KQ^2}{d^2} = Mg - \frac{KQ^2}{3d^2} \quad \Rightarrow \quad \boxed{Q = \frac{d}{2}\sqrt{\frac{3Mg}{K}}}$$

Para mantener el equilibrio de la barra, determinar la magnitud de la carga "q"; si: d = 0.6 m yW = 160 N


Solución:

 \square Analizando la fuerza electrostática entre (-q) y (+q):

$$F = \frac{Kq^2}{(0.6)^2} = \frac{9 \times 10^9 q^2}{(0.6)^2}$$

$$F = 25 \times 10^9 q^2$$
(1)

☐ Analizando el equilibrio de la barra:


Reemplazando en (1):

$$80 = 25 \times 10^9 q^2 \implies q = 0.565 \times 10^{-4} \text{ C}$$

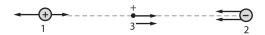
Tres esferas conductoras del mismo radio poseen cargas: +90 C, -20 C, +20 C, luego de juntarlas y separarlas, hallar la carga de la tercera esfera.

Solución:

Por el principio de la conservación de la carga, se establece un flujo de electrones hasta que se alcanza el equilibrio eléctrico; las cargas se distribuyen proporcionalmente al radio y como estos son iguales, las nuevas cargas serán también iquales.

 $\square \quad \Sigma Q_{inicial} = \Sigma Q_{final}$

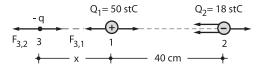
$$90 - 20 + 20 = q + q + q$$
 \Rightarrow $q = 30 C$


6.-Determinar la posición de una carga situada en la línea recta que une dos cargas concentradas de +50 y -18 stC separadas 40 cm de tal manera que todo el sistema se encuentra en equilibrio horizontal.

Electricidad 289

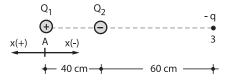
Solución:

Analizando las posibles alternativas:


No existe equilibrio

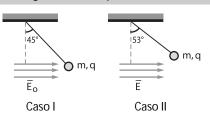
No existe equilibrio

No existe equilibrio

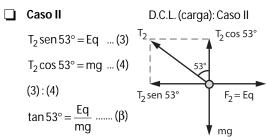

Posible equilibrio

 \Box En el punto (3): $F_{3,1} = F_{3,2}$

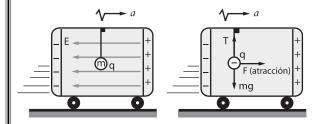
$$\frac{KqQ_1}{x^2} = \frac{KqQ_2}{(x+40)^2}$$


$$\frac{50}{x^2} = \frac{18}{(x+40)^2} \implies x = -100 \,\text{cm}$$

Interpretando la respuesta:


60 cm a la derecha de (2)

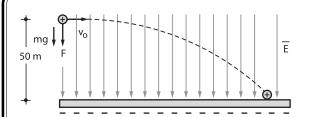
7.- Una esfera conductora muy pequeña suspendida de un hilo aislante es usada para medir la intensidad de un campo eléctrico, cuando se le coloca en un campo cuya intensidad es $E_0 = 120\,\text{N/C}$, se observa que el hilo forma un ángulo de 45° con la vertical. Calcular la intensidad del campo \bar{E} si el sistema (hilo + esfera) se desvía un ángulo de 53° respecto a la vertical.


Solución:

D.C.L. (carga): Caso I $T_1 \sin 45^\circ = E_0 q \dots (1)$ $T_1 \cos 45^\circ = mg \dots (2)$ (1): (2) $\tan 45^\circ = \frac{E_0 q}{mg} \dots (\alpha)$

 $(\alpha): (\beta)$ $\frac{\tan 45^{\circ}}{\tan 53^{\circ}} = \frac{E_{o}q}{Eq} \implies E = E_{o} \frac{\tan 53^{\circ}}{\tan 45^{\circ}}$ $E = 120 \left(\frac{4}{3}\right) \implies E = 160 \text{ N/C}$

8.- En la figura mostrada, el carro acelera a 4 m/s² (constante). Calcular la intensidad del campo eléctrico para que la masa de 2,5 kg se mantenga en la posición indicada (q = -5 Coulomb).



Solución:

- Si no existiese "F" la masa "m" se desplazaría hacia atrás.
- Horizontalmente (en la masa "m"): $F_R = ma$

$$F=ma$$
 \Rightarrow $Eq=ma$
 $E(5)=(2,5)(4)$ \Rightarrow $E=2N/C$

9.- Se tiene un campo eléctrico uniforme vertical hacia abajo cuya intensidad es igual a 5 N/C. Si se lanza horizontalmente una carga eléctrica de 2×10⁻⁷ C, con una velocidad igual a 100 m/s. Hallar después de qué tiempo llega a la placa inferior que se muestra, si inicialmente estaba a una altura de 50 m.
Masa de la carga = 0,50 kg; g = 10 m/s²

Solución:

☐ Verticalmente: 2^{da} ley de Newton.

 $\Sigma F = ma$

 $mq+F=ma \Rightarrow mq+Eq=ma$

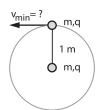
 $(0,5)(10) + (5)(2\times10^{-7}) = (0,5)a$

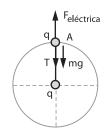
 $a = 10,000\,002\,\mathrm{m/s^2}$

☐ Verticalmente: M.R.U.V.

h = 50 m, $a = 10,000 002 \text{ m/s}^2$

 $v_0 = 0$, t = ?(s)


 $h = v_0 t + \frac{1}{2} a t^2$


 $50 = \frac{1}{2}(10,000002)t^2$

 $t = 3.16 \times 10^{-3} \text{ s}$

10.-Una esferita de 0,5 kg de masa y carga 0,5×10⁻⁵ C, puede girar en un plano vertical suspendida de un hilo de 1 metro de longitud. En el centro del círculo se encuentra una segunda esferita, cuya carga es igual en valor y en signo a la esferita que gira. ¿Qué velocidad horizontal mínima hay que darle a la esferita en su posición más alta para que pueda realizar una vuelta completa? ($q = 10 \text{ m/s}^2$).

Solución:

 $\Box \quad \text{En "A": } F_{\text{centripeta}} = \frac{\text{mv}_{\text{A}}^{2}}{\text{R}}$

$$mg + T - F = \frac{mv_A^2}{(1)}$$

☐ Ahora, para que v_A sea mínima "T" deberá ser cero.

$$mg - \frac{Kqq}{(1)^2} = mv_A^2 \implies v_A = \sqrt{g - \frac{Kq^2}{m}}$$

$$v_A = \sqrt{10 - \frac{9 \times 10^9 (10^{-5})^2}{0.5}} \implies v_A = 2.86 \,\text{m/s}$$

PROBLEMAS PROPUESTOS

PROBLEMAS DE APLICACIÓN

Determine que carga poseen los siguientes cuerpos 1.según el número de electrones en defecto o exceso.

> 10³⁰ electrones (defecto) ⇒ 4×10^{23} electrones (defecto) \Rightarrow 15×10^{20} electrones (exceso) \Rightarrow

 20×10^{15} electrones (defecto) $\Rightarrow \dots$

Rpta.

16×10¹⁰ C $64 \times 10^{3} \, \text{C}$ -240 C $32 \times 10^{-4} \, \text{C}$

2.-Exprese cada una de las siguientes cargas como un número de electrones en exceso o defecto:

Rpta.

15 electrones (exceso) 40 electrones (defecto) No puede ser carga

Se tienen dos cargas de 2 μ C y 3 μ C respectivamente 3.que están separadas 3 mm. ¿Cuánto vale la fuerza de interacción electrostática?

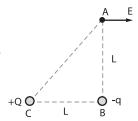
> $6 \times 10^{3} \, \text{N}$ Rpta.

4.-Una barra de cierto material descargada pierde 50 electrones, determinar la carga que adquiere.

> 8×10⁻¹⁸ C Rpta.

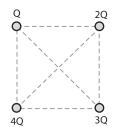
5.- Un trozo de plástico gana 200 electrones, determinar la carga que adquiere:

Rpta.
$$q = -32 \times 10^{-18} \text{ C}$$


6.- En la figura se observa tres cargas en los vértices de un triángulo rectángulo. Determinar la fuerza resultante en la carga ubicada en el vértice del ángulo recto. Q = q/4

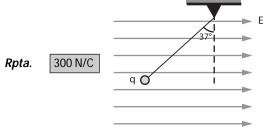
$$\frac{25\sqrt{337}}{576} \frac{\text{Kq}^2}{\text{d}^2}$$

7.- ¿Cuál debe ser la intensidad de un campo eléctrico capaz de sostener una carga de 5 g que posee una carga de (-5/3)×10⁻⁴ C

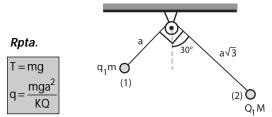

8.- En la figura mostrada, determinar la intensidad de campo "E" en el vértice (A), si Q = 32 μC, hallar la magnitud de "-q" para que el campo sea horizontal.

Rpta.

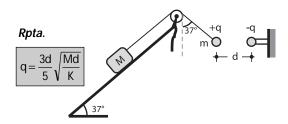
$$E = \frac{KQ\sqrt{2}}{4L^2}$$
$$q = 8\sqrt{2} \mu C$$


9.- Si, la figura muestra la carga "Q" que genera en el centro del cuadrado un campo cuya intensidad es 25 √2 N/C, determinar la intensidad de campo resultante en el centro del cuadrado.

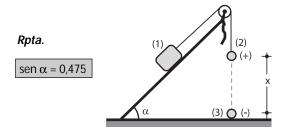
Rpta.

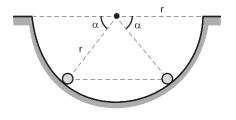

100 N/C

10.- Una esférita de peso 4×10⁻⁴ N, de carga q = -10⁻⁶ C, unida a un hilo de seda se encuentra suspendido de un punto fijo, dentro de un campo homogéneo de intensidad "E". Sabiendo que la esferita se encuentra en equilibrio, determinar "E".



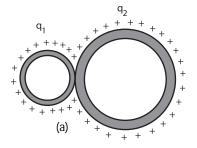
B PROBLEMAS COMPLEMENTARIOS


1.- La figura muestra dos cargas "Q" y "q" de masas "M" y "m" en equilibrio, determinar la tensión en la cuerda que las une. Hallar "q" en términos de "Q".


2.- No existiendo rozamiento y estando el sistema en equilibrio, hallar "q" para que se cumpla dicho estado. (en términos de M y d).

3.- En la figura mostrada, hallar la inclinación " α " del plano inclinado, para que el sistema se encuentre en equilibrio, si se sabe: $W_1=4W_2=10^{12}$ N, $q_2=q_3=1$ C, $q_1=0$; x=0,2 m y no hay rozamiento.

4.- Se muestran dos esferas pequeñas de masas y cargas iguales, si el peso de las esferas es de 7 N, calcúlese la carga para el equilibrio: r = 5 cm; sen $\alpha = 7/25$

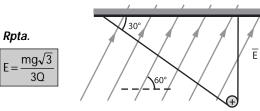

Rpta.

4,96×10⁻⁶ C

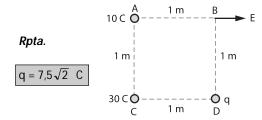
5.- Dos esferas conductoras eléctricas idénticas tienen cargas de signos contrarios y se atraen con una fuerza de 0,108 N; cuando se encuentran separadas una distancia de 0,5 m. Las esferas se ponen en contacto y luego se separan y se encuentra que a la misma distancia se separan con una fuerza de 0,036 N. ¿Cuáles eran las cargas iniciales?

Rpta.
$$Q_1 \cong -3 \times 10^{-6} \,\mathrm{C}$$
; $Q_2 = 1 \times 10^{-6} \,\mathrm{C}$

6.- Dos cascarones esféricos conductores, de cargas +28 C y -8 C, con radios "r" y "2r", deben hacer contacto según los casos (a) externamente, (b) internamente. ¿Qué cargas tendrán los cascarones después del contacto, según sea el caso?

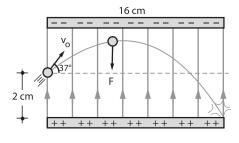


Rpta. (a) $q_1 = 4 C$ $q_2 = 16 C$ (b) $q_1 = 0$ $q_2 = 20 C$


7.- Dos cargas puntuales de 4 C y 9 C se repelen con una fuerza de 0,012 5 N. Hallar la intensidad de campo eléctrico en el punto medio de la distancia que las separa.

Rpta. $6.94 \times 10^{-3} \,\text{N/C}$

8.- En la figura, hallar la intensidad del campo uniforme, para que la esfera de carga "Q"(+) y masa "m", se encuentre en equilibrio.



9.- Tres cargas son colocadas como se muestra en la figura en los vértices A, C y D. Calcule q si el campo eléctrico en B sigue la dirección mostrada.

- **10.-** El electrón entra a una región entre dos placas cargadas con un ángulo de 37°. Su velocidad inicial es 5×10⁻⁶ m/s y está a 2 cm de la placa positiva, determinar:
 - a) Intensidad de campo eléctrico.
 - b) El tiempo en que tarda en golpear la placa.

Considerar despreciable la acción de la gravedad.

Rpta. (a) 710.9 N/C (b) $4 \times 10^{-8} \text{ s}$