
1. ($\mathbf{1}$ marks, $\mathbf{1 0} \mathbf{~ m i n s}$) Consider the data provided in the table below and explain: i) the variation observed in the melting points of these compounds and ii) whether they are expected to be soluble in water.

	Potassium chloride	Nitrogen	Ethane	Propane	Ethanol	Acetic acid	C (diamond)
Melting point (${ }^{\circ}$ C)	776	-210	-183	-138	-114	17	3550
Solube in water (Y/N)							

2. (1.0 marks, 15 mins) The heat of combustion of ethane gas is $\mathbf{1 5 6 1} \mathbf{~ k J} / \mathrm{mol}$. Assuming that 60% of the heat is useful, how many liters of ethane (S.T.P.) must be burned to supply enough heat to convert 50 kg of water at $10^{\circ} \mathrm{C}$ to steam at $100{ }^{\circ} \mathrm{C}$?

Data: $\mathrm{R}=0.082 \mathrm{~atm} \cdot \mathrm{l} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1} ; \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)=18 \mathrm{~g} / \mathrm{mol} ; \mathrm{M}$ (ethane) $=30.07 \mathrm{~g} / \mathrm{mol}$;
$\Delta \mathrm{H}_{\text {vap }}\left(\mathrm{H}_{2} \mathrm{O}, 100^{\circ} \mathrm{C}\right)=2257 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{c}_{\mathrm{p}}\left(\mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right)=4.177 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C}$ (Assume c_{p} to be constant in that temperature range);
3. (2.0 marks, 20 mins) A solution made by adding solid sodium hypochlorite (NaClO) to enough water to make 2.00 L of solution has a pH of 10.50 . Using the information given below:
a) $(0.25 \mathrm{~m})$ Write down the ionization equilibrium of the salt. Will any of the ions react with water? Why?
b) $(1.0 \mathrm{~m})$ Calculate the initial concentration of the NaClO solution in moles per liter of solution.
c) $(0.25 \mathrm{~m})$ Calculate the grams of NaClO that were added to the initial solution.
d) $(0.5 \mathrm{~m})$ How will the solubility of this salt in water be affected by the addition of $\mathrm{HCl}(\mathrm{aq})$?

Data: $\mathrm{K}_{\mathrm{a}}(\mathrm{HClO})=2.9 \cdot 10^{-8}, \mathrm{~K}_{\mathrm{w}}\left(\mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right)=10^{-14} ; \mathrm{M}(\mathrm{NaClO})=74.44 \mathrm{~g} \mathrm{~mol}^{-1}$
4. ($\mathbf{3}$ marks, $\mathbf{3 0} \mathbf{~ m i n s}$) Given the following reaction: $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$ and taking into account the results obtained in the following experiments,

$[\mathrm{A}]_{0}\left(\mathrm{~mol} \mathrm{I}^{-1}\right)$	$[\mathrm{B}]_{0}\left(\mathrm{~mol} \mathrm{r}^{-1}\right)$	$\begin{aligned} & \left.\mathbf{R}_{25^{5}} \mathrm{c}^{*} *^{*} 0^{7}\right) \\ & \left(\mathrm{mol}^{-1} \mathrm{~min}^{-1}\right) \end{aligned}$	$\underset{\left(\mathrm{mol}_{40} \mathrm{C} \mathrm{I}^{-1}\right.}{\left.\mathrm{A}^{* 100^{7}} \mathrm{~min}^{-1}\right)}$
0.01	0.01	3.78	4.82
0.01	0.02	5.35	6.82
0.02	0.01	7.56	9.64

Answer the following questions:
a) Calculate the partial orders of the reaction for A and B. (Assume the partial orders remain constant within that temperature range).
b) Is the chemical reaction an elemental process? Why?
c) Determine the values of the kinetic constant at the two temperatures $25{ }^{\circ} \mathrm{C}$ and $40{ }^{\circ} \mathrm{C}$.
d) Determine the activation energy of the reaction.
e) The rate equations at the two temperatures ($25{ }^{\circ} \mathrm{C}$ and $40{ }^{\circ} \mathrm{C}$) assuming that the mechanism of the reaction remains the same within this temperature range;
 calculate Gibbs free energy and the value of the equilibrium constant at that temperature.

Data: $\mathrm{R}=8.314 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}=1.987 \mathrm{cal} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{1}$
5. (1.25 marks, 20 mins) An experiment requires an environment of humid air enriched in oxygen. Three input streams are fed into an evaporation chamber to produce an output stream with the desired composition:

Stream A: liquid water fed at a rate of $20.0 \mathrm{~cm}^{3} / \mathrm{min}$.
Stream B: Air ($21 \% \mathrm{O}_{2} ; 79 \% \mathrm{~N}_{2}$, mole fraction).
Stream $\underline{\text { C }: ~ P u r e ~ o x y g e n, ~ w i t h ~ a ~ m o l a r ~ f l o w ~ r a t e ~ o n e ~-~ f i f t h ~ o f ~ t h e ~ m o l a r ~ f l o w ~ r a t e ~ o f ~ s t r e a m ~ B . ~}$

The output gas is analyzed and is found to contain 1.5% moles of water.
a) $(0.5 \mathrm{~m})$ Draw and label a flowchart of the process
b) $(0.25 \mathrm{~m})$ Calculate the flow rate of the output gas in $\mathrm{mol} / \mathrm{min}$.
c) $(0.25 \mathrm{~m})$ Calculate the flow rate of B and C streams in mol $/ \mathrm{min}$.
d) $(0.25 \mathrm{~m})$ Determine the composition of the output stream (mole fraction, \%).

Data: $\rho\left(\mathrm{H}_{2} \mathrm{O}\right)=1 \mathrm{~g} / \mathrm{cm} 3 ; \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)=18 \mathrm{~g} / \mathrm{mol}$
6. (0.75 mark, 10 mins) How many hours are required to plate 25.00 g of copper metal from a $1.00 \mathrm{M} \mathrm{CuSO}_{4}$ (aq) solution, by using a current of 3.00 A .

Data: $\mathrm{F}=96500 \mathrm{C} / \mathrm{mol} ; \mathrm{M}(\mathrm{Cu})=63.5 \mathrm{~g} / \mathrm{mol}$
7. (1.0 marks, 15 mins) Indicate whether the following statements are true (T) or false (F).

Correct answers $\mathbf{+ 0 . 1 p}$; Incorrect answers $\mathbf{- 0 . 0 5 p}$.

	$\mathbf{1}$	The dehydrogenation reaction is an elimination reaction that usually yields as a product an organic derivative with a double or a triple bond.
	$\mathbf{2}$	The solubility in water of carboxylic acids of the same homologous series increases with the number of carbon atoms of the chain.
	$\mathbf{3}$	The reaction of a CARBOXYLIC ACID with an ALCOHOL usually yields an ester as a result of a condensation reaction.
	$\mathbf{4}$	Pyrogenation of coal is based on a thermal treatment with oxygen at high temperature to obtain liquid hydrocarbons.
	$\mathbf{5}$	From methane it is possible to obtain syngas $\left(\mathrm{CO}+\mathrm{H}_{2}\right)$ which is used as raw material for many industrial processes.
$\mathbf{7}$	In the combustion of a fuel, a lean mixture is a mixture with an excess of air. Linear alkenes usually have higher boiling points than linear alcohols of the same number of carbon atoms.	
$\mathbf{8}$	Given a binary mixture of two volatile substances (A \& B), in a rectifying column, the compound with the higher boiling temperature will be obtained at the head of the column.	
$\mathbf{9}$	Steam distillation is used mainly to obtain substances that are highly soluble in water vapour and temperature sensitive materials	
	In organic reactions, a homolytic bond cleavage yields as a result two ionic compounds, the carbocation and a carbanion.	

