

Universidad Carlos III de Madrid

SURNAME	. NAME	GROUPS 45, 46

			EXAM (60%)

1. (1 marks, 10 mins) Consider the data provided in the table below and explain: i) the variation observed in the melting points of these compounds and ii) whether they are expected to be soluble in water.

	Potassium chloride	Nitrogen	Ethane	Propane	Ethanol	Acetic acid	C (diamond)
Melting point (ºC)	776	-210	-183	-138	-114	17	3550
Soluble in water (Y/N)							

2. (1.0 marks, 15 mins) The heat of combustion of ethane gas is 1561 kJ/mol. Assuming that 60 % of the heat is useful, how many liters of ethane (S.T.P.) must be burned to supply enough heat to convert 50 kg of water at 10°C to steam at 100 °C?

Data: R = 0.082 atm·l·mol⁻¹·K⁻¹; M (H₂O) = 18 g/mol; M (ethane) = 30.07 g/mol; ΔH_{vap} (H₂O, 100°C) = 2257 kJ/kg; c_p (H₂O,25°C) = 4.177 kJ/kg °C (Assume c_p to be constant in that temperature range);

- 3. (2.0 marks, 20 mins) A solution made by adding solid sodium hypochlorite (NaClO) to enough water to make 2.00 L of solution has a pH of 10.50. Using the information given below:
 - a) (0.25 m) Write down the ionization equilibrium of the salt. Will any of the ions react with water? Why?
 - b) (1.0 m) Calculate the initial concentration of the NaClO solution in moles per liter of solution.
 c) (0.25 m) Calculate the grams of NaClO that were added to the initial solution.

 - d) (0.5 m) How will the solubility of this salt in water be affected by the addition of HCI (aq)?

Data: $K_a(HCIO) = 2.9 \cdot 10^{-8}$, $K_w(H_2O, 25 \circ C) = 10^{-14}$; $M(NaCIO) = 74.44 \text{ g mol}^{-1}$

4. (3 marks, 30 mins) Given the following reaction: $A + B \rightarrow C$ and taking into account the results obtained in the following experiments,

[A]₀ (mol l ⁻¹)	[B]₀ (mol l ⁻¹)	R _{25℃} (*10 ⁷) (mol l ⁻¹ min ⁻¹)	R _{40 ℃} (*10 ⁷) (mol I ⁻¹ min ⁻¹)
0.01	0.01	3.78	4.82
0.01	0.02	5.35	6.82
0.02	0.01	7.56	9.64

Answer the following questions:

- a) Calculate the **partial orders** of the reaction for A and B. (Assume the partial orders remain constant within that temperature range).
- b) Is the chemical reaction an elemental process? Why?
- c) Determine the values of the kinetic constant at the two temperatures 25 °C and 40 °C.
- d) Determine the **activation energy** of the reaction.
- e) The **rate equations** at the two temperatures (25 °C and 40 °C) assuming that the mechanism of the reaction remains the same within this temperature range;
- f) If the enthalpy for the reaction at 40 °C is $\Delta H = -2 \text{ kcal·mol}^{-1}$ and the entropy change is $\Delta S = 2 \text{ cal·mol}^{-1} \text{ K}^{-1}$, calculate **Gibbs free energy** and the value of the **equilibrium constant** at that temperature.

Data: $R = 8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 1.987 \text{ cal} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

5. (1.25 marks, 20 mins) An experiment requires an environment of humid air enriched in oxygen. Three input streams are fed into an evaporation chamber to produce an output stream with the desired composition:

Stream <u>A</u>: liquid water fed at a rate of $20.0 \text{ cm}^3/\text{min}$.

Stream B: Air (21% O₂; 79% N₂, mole fraction).

Stream <u>C</u>: Pure oxygen, with a molar flow rate one – fifth of the molar flow rate of stream B.

The output gas is analyzed and is found to contain 1.5 % moles of water.

- a) (0.5 m) Draw and label a flowchart of the process
- b) (0.25 m) Calculate the flow rate of the output gas in mol/min.
- c) (0.25 m) Calculate the flow rate of B and C streams in mol/min.
- d) (0.25 m) Determine the composition of the output stream (mole fraction, %).

Data: $\rho(H_2O) = 1g/cm3$; $M(H_2O) = 18 g/mol$

6. (0.75 mark, 10 mins) How many hours are required to plate 25.00 g of copper metal from a 1.00 M CuSO₄ (aq) solution, by using a current of 3.00 A.

Data: F = 96500 C/mol; M(Cu) = 63.5 g/mol

7. (1.0 marks, 15 mins) Indicate whether the following statements are true (T) or false (F).

Correct answers +0.1p; Incorrect answers -0.05p.

1	The dehydrogenation reaction is an elimination reaction that usually yields as a product an organic
 	derivative with a double or a triple bond.
2	The solubility in water of carboxylic acids of the same homologous series increases with the number of carbon atoms of the chain.
3	The reaction of a CARBOXYLIC ACID with an ALCOHOL usually yields an ester as a result of a condensation reaction.
4	Pyrogenation of coal is based on a thermal treatment with oxygen at high temperature to obtain liquid hydrocarbons.
5	From methane it is possible to obtain syngas (CO + H ₂) which is used as raw material for many industrial processes.
6	In the combustion of a fuel, a lean mixture is a mixture with an excess of air.
7	Linear alkenes usually have higher boiling points than linear alcohols of the same number of carbon atoms.
8	Given a binary mixture of two volatile substances (A & B), in a rectifying column, the compound with the higher boiling temperature will be obtained at the head of the column.
9	Steam distillation is used mainly to obtain substances that are highly soluble in water vapour and temperature sensitive materials
10	In organic reactions, a homolytic bond cleavage yields as a result two ionic compounds, the carbocation and a carbanion.