z-TRANSFORM PROPERTIES

The index-domain signal is x[n] for $-\infty < n < \infty$; and the z-transform is:

$$X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n} \qquad \Longleftrightarrow \qquad x[n] = \frac{1}{2\pi i} \oint X(z) z^n \frac{dz}{z}$$

The ROC is the set of complex numbers z where the z-transform sum converges.

Signal: $x[n] - \infty < n < \infty$	z-Transform: $X(z)$	Region of Convergence
$x[n], x_1[n] \text{ and } x_2[n]$	$X(z)$, $X_1(z)$ and $X_2(z)$	R_x , R_1 and R_2
$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	contains $R_1 \cap R_2$
$x[n-n_{\circ}]$	$z^{-n_{\circ}}X(z)$	R_x except for the possible addition or deletion of $z = 0$ or $z = \infty$
$z_{\circ}^{n}x[n]$	$X(z/z_{\circ})$	$ z_{\circ} R_{x}$
n x[n]	$-z\frac{dX(z)}{dz}$	R_x except for the possible addition or deletion of $z = 0$ or $z = \infty$
$x^*[n]$	$X^*(z^*)$	R_x
$\Re e\{x[n]\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	contains R_x
$\Im m\{x[n]\}$	$\frac{1}{2j}[X(z) - X^*(z^*)]$	contains R_x
x[-n]	X(1/z)	$1/R_x = \{z : z^{-1} \in R_x\}$
$x_1[n] * x_2[n]$	$X_1(z) \cdot X_2(z)$	contains $R_1 \cap R_2$
$x_1[n] \cdot x_2[n]$	$\frac{1}{2\pi j} \oint X_1(v) X_2(z/v) \frac{dv}{v}$	contains R_1R_2
Parseval's Theorem:	$\sum_{n=-\infty}^{\infty} x_1[n] x_2^*[n] = \frac{1}{2\pi j} \oint X_1(v) X_2^*(1/v^*) \frac{dv}{v}$	
Initial Value Theorem:	x[n] = 0, for n < 0	$\implies \lim_{z \to \infty} X(z) = x[0]$